

1	(iii)		$\begin{align*} & \quad x=\ln [2 y /(1+y)] \text { or } \\ & \Rightarrow \mathrm{e}^{x}=2 y /(1+y) \\ & \Rightarrow \mathrm{e}^{x}(1+y)=2 y \\ & \Rightarrow \mathrm{e}^{x}=2 y-\mathrm{e}^{x} y=y\left(2-\mathrm{e}^{x}\right) \\ & \Rightarrow y=\mathrm{e}^{x} /\left(2-\mathrm{e}^{x}\right)[=\mathrm{g}(x)] \\ & \text { OR } \operatorname{gf}(x)=\mathrm{g}(2 x /(1+x))=\mathrm{e}^{\ln [2 x /(1+x)]} /\left\{2-\mathrm{e}^{\ln [2 x /(1+x)]}\right\} \\ & \qquad=\frac{2 x /(1+x)}{2-2 x /(1+x)} \tag{A1}\\ & \quad=\frac{2 x}{2+2 x-2 x}=\frac{2 x}{2}=x \\ & \text { gradient at } \mathrm{R}=1 / 1 / 2=2 \end{align*}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \\ \text { A1 } \\ \\ \text { M1A1 } \\ \text { B1 ft } \\ \text { [5] } \end{gathered}$	($x \leftrightarrow y$ here or at end to complete) completion forming gf or fg $1 /$ their ans in (ii) unless ± 1 or 0	$\begin{aligned} & \begin{array}{ll} x=\mathrm{e}^{y} /\left(2-\mathrm{e}^{y}\right) & \\ \begin{array}{ll} x\left(2-\mathrm{e}^{y}\right)=\mathrm{e}^{y} & \text { B1 } \\ 2 x=\mathrm{e}^{y}+x \mathrm{e}^{y}=\mathrm{e}^{y}(1+x) & \text { B1 } \\ 2 x /(1+x)=\mathrm{e}^{y} & \text { B1 } \\ \begin{array}{l} \ln [2 x /(1+x)]=y[=\mathrm{f}(x)] \end{array} & \text { B1 } \\ \mathrm{fg}(x) & =\ln \left\{2 \mathrm{e}^{x} /\left(2-\mathrm{e}^{x}\right) /\left[1+\mathrm{e}^{x} /\left(2-\mathrm{e}^{x}\right)\right]\right\} \end{array} \\ \quad \mathrm{M} 1 \\ \quad=\ln \left[2 \mathrm{e}^{x} /\left(2-\mathrm{e}^{x}+\mathrm{e}^{x}\right)\right] & \text { A1 } \\ \quad=\ln \left(\mathrm{e}^{x}\right)=x \end{array} \end{aligned}$
	(iv)		$\begin{aligned} & \text { let } u=2-\mathrm{e}^{x} \Rightarrow \mathrm{~d} u / \mathrm{d} x=-\mathrm{e}^{x} \\ & x=0, u=1, x=\ln (4 / 3), u=2-4 / 3=2 / 3 \\ & \Rightarrow \quad \int_{0}^{\ln (4 / 3)} \mathrm{g}(x) \mathrm{d} x=\int_{1}^{2 / 3}-\frac{1}{u} \mathrm{~d} u \\ & =[-\ln (u)]_{1}^{2 / 3}=-\ln (2 / 3)+\ln 1=\ln (3 / 2)^{*} \end{aligned}$ Shaded region $=$ rectangle - integral $\begin{aligned} & =2 \ln (4 / 3)-\ln (3 / 2) \\ & =\ln (16 / 9 \times 2 / 3) \\ & =\ln (32 / 27)^{*} \end{aligned}$		$2-e^{0}=1$, and $2-e^{\ln (4 / 3)}=2 / 3$ seen $\int-1 / u \mathrm{~d} u$ condone $\int 1 / u \mathrm{~d} u$ $[-\ln (u)]$ (could be $[\ln u]$ if limits swapped) NB AG rectangle area $=2 \ln (4 / 3)$ NB AG must show at least one step from $2 \ln (4 / 3)-\ln (3 / 2)$	here or later (i.e. after substituting 0 and $\ln (4 / 3)$ into $\left.\ln \left(2-\mathrm{e}^{x}\right)\right)$ or by inspection $\left[k \ln \left(2-\mathrm{e}^{x}\right)\right.$] $k=-1$ Allow full marks here for correctly evaluating $\int_{1}^{2} \ln \left(\frac{2 x}{1+x}\right) \mathrm{d} x$ (see additional notes)

$\begin{array}{lll} \text { 2(i) } & \text { A: } & 1+\ln x=0 \\ \Rightarrow & & \ln x=-1 \text { so } \mathrm{A} \text { is }\left(\mathrm{e}^{-1}, 0\right) \\ \Rightarrow & & x=\mathrm{e}^{-1} \\ & \mathrm{~B}: & x=0, y=\mathrm{e}^{0-1}=\mathrm{e}^{-1} \text { so } \mathrm{B} \text { is }\left(0, \mathrm{e}^{-1}\right) \end{array}$ C: $\begin{aligned} & \mathrm{f}(1)=\mathrm{e}^{1-1}=\mathrm{e}^{0}=1 \\ & \mathrm{~g}(1)=1+\ln 1=1 \end{aligned}$	M1 A1 B1 E1 E1 [5]	SC1 if obtained using symmetry condone use of symmetry Penalise $A=e^{-1}, B=e^{-1}$, or co-ords wrong way round, but condone labelling errors.
(ii) Either by invertion: $\begin{array}{ll} \text { e.g. } & y=\mathrm{e}^{x-1} x \leftrightarrow y \\ & x=\mathrm{e}^{y-1} \\ \Rightarrow & \ln x=y-1 \\ \Rightarrow & 1+\ln x=y \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	taking lns or exps
$\begin{aligned} & \text { or by composing } \\ & \text { e.g. } \quad \begin{aligned} \mathrm{fg}(x) & =\mathrm{f}(1+\ln x) \\ & =\mathrm{e}^{1+\ln x-1} \\ & =\mathrm{e}^{\ln x}=x \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & \text { [2] } \end{aligned}$	$\mathrm{e}^{1+\ln x-1}$ or $1+\ln \left(\mathrm{e}^{x-1}\right)$
$\text { (iii) } \begin{aligned} \int_{0}^{1} e^{x-1} d x & =\left[e^{x-1}\right]_{0}^{1} \\ & =\mathrm{e}^{0}-\mathrm{e}^{-1} \\ & =1-\mathrm{e}^{-1} \end{aligned}$	M1 M1 A1cao [3]	$\left[e^{x-1}\right] \text { o.e or } u=x-1 \Rightarrow\left[e^{u}\right]$ substituting correct limits for x or u o.e. not e^{0}, must be exact.
$\begin{aligned} & \text { (iv) } \begin{aligned} & \int \ln x d x=\int \ln x \frac{d}{d x}(x) d x \\ &= x \ln x-\int x \cdot \frac{1}{x} d x \\ &=x \ln x-x+c \\ & \Rightarrow \quad \int_{e^{-1}}^{1} \mathrm{~g}(x) d x=\int_{e^{-1}}^{1}(1+\ln x) d x \\ &=[x+x \ln x-x]_{e^{-1}}^{1} \\ &=[x \ln x)]_{e^{-1}}^{1} \\ &=1 \ln 1-\mathrm{e}^{-1} \ln \left(\mathrm{e}^{-1}\right) \\ &=\mathrm{e}^{-1} * \end{aligned} \end{aligned}$	M1 A1 A1cao B1ft DM1 E1 [6]	parts: $u=\ln x, \mathrm{~d} u / \mathrm{d} x=1 / x, v=x, \mathrm{~d} v / \mathrm{d} x=1$ condone no ' c ' ft their ' $x \ln x-x$ ' (provided 'algebraic') substituting limits dep B1 www
$\text { (v) } \begin{aligned} \text { Area } & =\int_{0}^{1} \mathrm{f}(x) \mathrm{d} x-\int_{-\mathrm{e}^{-1}}^{1} \mathrm{~g}(x) \mathrm{d} x \\ & =\left(1-\mathrm{e}^{-1}\right)-\mathrm{e}^{-1} \\ & =1-2 / \mathrm{e} \end{aligned}$	M1 A1cao	Must have correct limits 0.264 or better.
or $\begin{aligned} \text { Area } \mathrm{OCB} & =\text { area under curve }- \text { triangle } \\ & =1-\mathrm{e}^{-1}-1 / 2 \times 1 \times 1 \\ & =1 / 2-\mathrm{e}^{-1} \end{aligned}$ or $\begin{aligned} \text { Area } \begin{aligned} \mathrm{OAC} & =\text { triangle }- \text { area under curve } \\ & =1 / 2 \times 1 \times 1-\mathrm{e}^{-1} \\ & =1 / 2-\mathrm{e}^{-1} \\ \text { Total area } & =2\left(1 / 2-\mathrm{e}^{-1}\right)=1-2 / \mathrm{e} \end{aligned} . \end{aligned}$	M1 A1cao [2]	$\mathrm{OCA} \text { or } \mathrm{OCB}=1 / 2-\mathrm{e}^{-1}$ 0.264 or better

$3 \text { (i) }$	Stretch in x-direction s.f. translation in y-direction 1 unit up	M1 A1 M1 A1 [4]	(in either order) - allow 'contraction' dep 'stretch' allow 'move', 'shift', etc - direction can be inferred from $\binom{0}{1}$ or $\binom{0}{1}$ dep 'translation'. $\binom{0}{1}$ alone is M1 A0
(ii)	$\begin{aligned} & A=\int_{-\pi / 4}^{\pi / 4}(1+\sin 2 x) d x \\ & =\left[x-\frac{1}{2} \cos 2 x\right]_{-\pi / 4}^{\pi / 4} \\ & =\pi / 4-1 / 2 \cos \pi / 2+\pi / 4+1 / 2 \cos (-\pi / 2) \\ & =\pi / 2 \end{aligned}$	M1 B1 M1 A1 [4]	correct integral and limits. Condone $\mathrm{d} x$ missing; limits may be implied from subsequent working. substituting their limits (if zero lower limit used, must show evidence of substitution) or 1.57 or better - cao (www)
$\begin{aligned} & \quad{ }^{(i i i)} \\ & \Rightarrow \\ & \Rightarrow \end{aligned}$	$\begin{aligned} & y=1+\sin 2 x \\ & \mathrm{~d} y / \mathrm{d} x=2 \cos 2 x \\ & \text { When } x=0 \text {, dy } / \mathrm{d} x=2 \\ & \text { So gradient at }(0,1) \text { on } \mathrm{f}(x) \text { is } 2 \\ & \text { gradient at }(1,0) \text { on } \mathrm{f}^{-1}(x)=1 / 2 \end{aligned}$	M1 A1 A1ft B1ft [4]	differentiating - allow 1 error (but not $x+2 \cos 2 x$) If 1 , then must show evidence of using reciprocal, e.g. $1 / 1$
(iv)	Domain is $0 \leq x \leq 2$.	B1 M1 A1 [3]	Allow 0 to 2, but not $0<x<2$ or y instead of x clear attempt to reflect in $y=x$ correct domain indicated (0 to 2), and reasonable shape
(v) $\begin{aligned} & \Rightarrow \\ & \Rightarrow \\ & \Rightarrow \end{aligned}$	$\begin{aligned} & y=1+\sin 2 x \quad x \leftrightarrow y \\ & x=1+\sin 2 y \\ & \sin 2 y=x-1 \\ & 2 y=\arcsin (x-1) \\ & y=1 / 2 \arcsin (x-1) \end{aligned}$	M1 A1 [2]	or $\sin 2 x=y-1$ cao

4(i) $y=1 /(1+\cos \pi / 3)=2 / 3$.	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	or 0.67 or better
$\text { (ii) } \begin{aligned} \mathrm{f}^{\prime}(x) & =-1(1+\cos x)^{-2} .-\sin x \\ & =\frac{\sin x}{(1+\cos x)^{2}} \end{aligned}$ When $x=\pi / 3, \mathrm{f}^{\prime}(x)=\frac{\sin (\pi / 3)}{(1+\cos (\pi / 3))^{2}}$ $=\frac{\sqrt{3} / 2}{\left(1 \frac{1}{2}\right)^{2}}=\frac{\sqrt{3}}{2} \times \frac{4}{9}=\frac{2 \sqrt{3}}{9}$	M1 B1 A1 M1 A1 [5]	chain rule or quotient rule $\mathrm{d} / \mathrm{d} x(\cos x)=-\sin x$ soi correct expression substituting $x=\pi / 3$ oe or 0.38 or better. $(0.385,0.3849)$
$\begin{aligned} \text { (iii) deriv } & =\frac{(1+\cos x) \cos x-\sin x .(-\sin x)}{(1+\cos x)^{2}} \\ & =\frac{\cos x+\cos ^{2} x+\sin ^{2} x}{(1+\cos x)^{2}} \\ & =\frac{\cos x+1}{(1+\cos x)^{2}} \\ & =\frac{1}{1+\cos x} * \\ \text { Area } & =\int_{0}^{\pi / 3} \frac{1}{1+\cos x} d x \\ & =\left[\frac{\sin x}{1+\cos x}\right]_{0}^{\pi / 3} \\ & =\frac{\sin \pi / 3}{1+\cos \pi / 3}(-0) \\ & =\frac{\sqrt{3}}{2} \times \frac{2}{3}=\frac{\sqrt{3}}{3} \end{aligned}$	M1 A1 M1dep E1 B1 M1 A1 cao [7]	Quotient or product rule condone uv' - u'v for M1 correct expression $\cos ^{2} x+\sin ^{2} x=1$ used dep M1 www substituting limits or $1 / \sqrt{ } 3$ - must be exact
$\begin{array}{ll} \text { (iv) } & y=1 /(1+\cos x) \quad x \leftrightarrow y \\ & x=1 /(1+\cos y) \\ \Rightarrow & 1+\cos y=1 / x \\ \Rightarrow & \cos y=1 / x-1 \\ \Rightarrow & y=\arccos (1 / x-1) * \end{array}$ Domain is $1 / 2 \leq x \leq 1$	A1 E1 B1 B1 [5]	attempt to invert equation www reasonable reflection in $y=x$

